Single-cell impedance spectroscopy for label-free diagnostics

Federica Caselli Università degli Studi di Roma "Tor Vergata"

The aim of this talk is to give an overview of the present status, challenges and future prospects of single-cell impedance spectroscopy. It is a label-free technique for the electrical characterization of single particles as they flow through a microchannel with integrated electrodes, and has applications in different biological assays including particle sizing and counting, cell phenotyping and disease diagnostics (see, e.g., the reviews [1,2]). In the last decade, novel concepts and ideas, coupled with the development of micro and nano technologies, have enhanced the sensitivity and specificity of the technique (see, e.g., the reviews [3,4]). However, some interdisciplinary challenges have to be addressed in order to allow a full exploitation of the research results at the industry level, accounting for the different market segments and the relevant end-users needs.

References

- [1] K.C. Cheung et al., Cytometry Part A 77 (2010), doi: 10.1002/cyto.a.20910.
- [2] T. Sun and H. Morgan, Microfluid. Nanofluid. 8 (2010), doi: 10.1007/s10404-010-0580-9.
- [3] Petchakup et al., Micromachines 8 (2017), doi: 10.3390/mi8030087.
- [3] Carminati M., Journal of Sensors 2017 (2017), doi: 10.1155/2017/7638389.